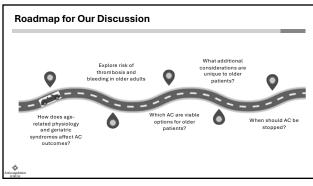
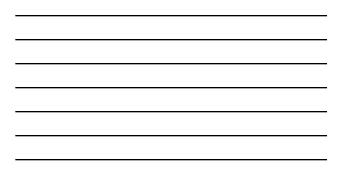
Anticoagulants in Older Adults

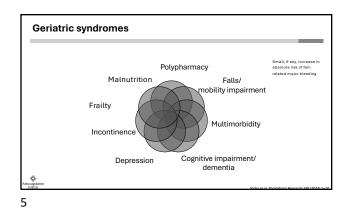

Anita Rajasekhar MD, MS, FACP November 3, 2024

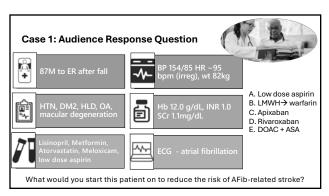

1

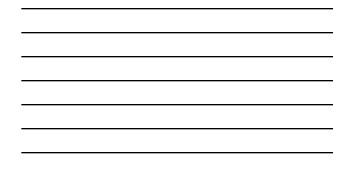
Learning Objectives

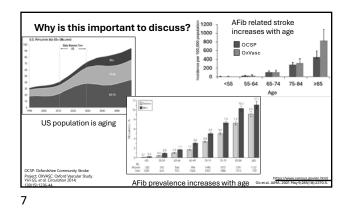
- Review evidence to support anticoagulation in older adults
- Explain the unique challenges of anticoagulation including increased risks of bleeding, frailty, and comorbid conditions in older adults
 Discuss how to tailor anticoagulation therapy in older adults by applying
- risk assessment tools to balance bleeding and thrombotic risks
- Evaluate patient cases to differentiate between high-risk and low-risk older adults for anticoagulation, and analyze when to adjust or discontinue therapy based on clinical factors

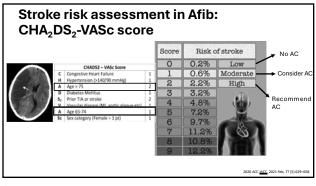
2

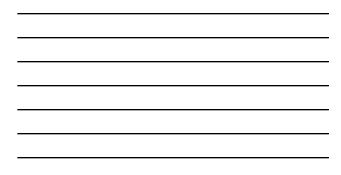


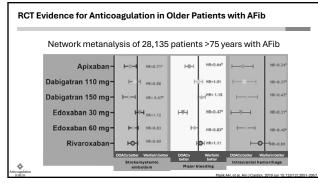

Age-related physiologic changes

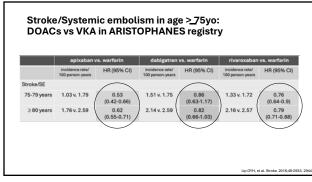

Age-related physiologic changes	Potential impact on OAC and outcomes
Decreased skeletal muscle mass & total body water	 Increased plasma concentrations of apixaban and edoxaban if <60kg Increased risk of major bleeding with edoxaban if body weight <60kg Decreased hepatic clearance of warfarin
Decline in GFR	 Increased plasma concentrations of dabigatran>edoxaban>rivaroxaban>apixaban, esp if CrCl <30ml/min
Decrease in liver size and blood flow	 Increased DOAC plasma concentration if moderate (rivaroxaban) or severe (apixaban, edoxaban, dabigatran) hepatic dysfunction Reduced warfarin clearance
Reduced activity in Vit K redox recycling symptom	 Increased warfarin sensitivity with about 20% lower warfarin dose requirements
Increased prevalence amyloid angiopathy, and cerebral atrophy	Increased risk ICH
Increased prevalence of diverticular and peptic ulcer disease	Increased risk of GI bleeding

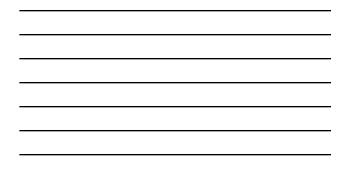

4

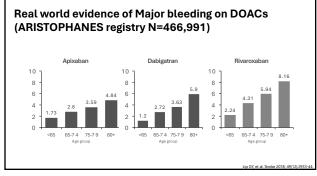


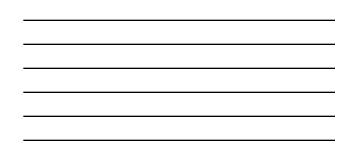


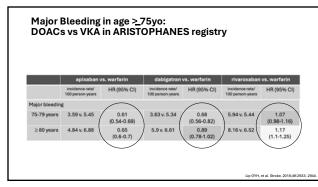

Stroke causes death and disability 30-day mortality up to 20% 6 0% 4 0% 35% 5.0% 30% 4 096 25% 3 0% 20% 1 596 2 0% 1 0% 1 096 5% 0% Hemiparesis Cognitive deficits Hemianopia Aphasia Sen sory de ficits 0% D opressive symptoms Un ableto veli una salted B add e 8

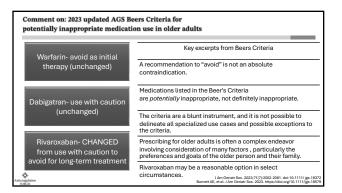


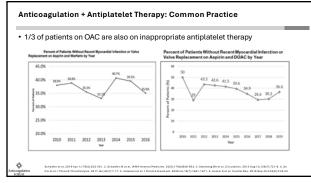


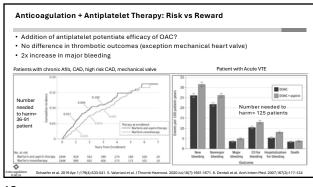

	Men and HERDOO2	Vienna Risk Model	DASH
Gender	х	х	х
D-dimer	х	х	х
Signs of Post- thrombotic syndrome	х		
Obesity	х		
Age	х		х
Location of DVT/PE		х	
Provoked?			х

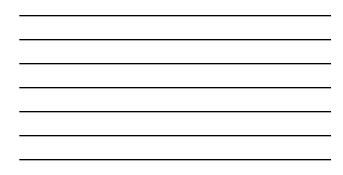


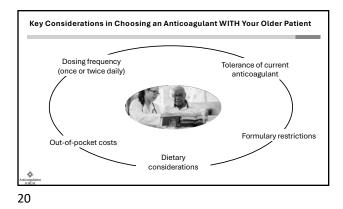


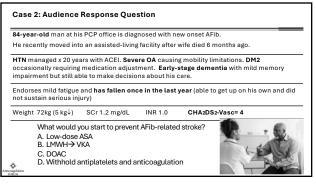

		DOAC Bleed Sc	ore	
HAS-BLED Bleed Sc	ore	Clinical characteristic	Points	Bleed risk scores should NOT be
Clinical characteristic	Point	Age 65-69	2	used in isolation to decide on
Clinical characteristic	s	Age 70-74	3	prescribing anticoagulants
Hypertension	1	Age 75-79	4	
		Age ≥ 80	5	 Assess for & address modifiable
Renal or hepatic dvsfunction	1 or 2	CrCl 30-60 ml/min	1	bleed risk factors
		CrCl <30 ml/min	2	
History of stroke	1	BMI <18.5 kg/m2	1	
History of bleeding	1	Stroke/TIA/embolism	1	 In our case patient
Labile INR	1	Diabetes	1	 Need for aspirin?
Age >65	1	Hypertension	1	Optimize BP
Drugs or alcohol	1 or 2	Single/Dual antiplatelet	2/3	 Minimize NSAID use Assess fall risk with mac deger
		NSAID use	1	1
\$		Bleeding history	3	
pulation		Liver disease	2	







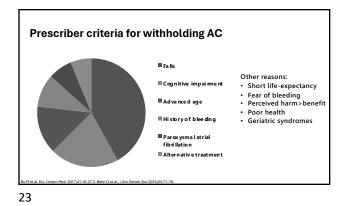

Antiplatelet + Anticoagulant Use in NH residents

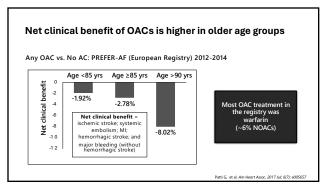

- Cross-sectional study
- 12 NH chains (709 facilities across 40 states)
- >100 days in a NH and had AF and a CHA2DS2-VASc (>1 men, >2 women)

12% receiving dual antithrombotic therapy and 45% receiving antiplatelets with no indication for use

Stratified:

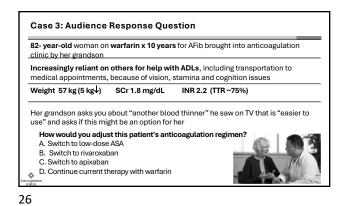
- 1) OAC plus antiplatelets (N=582)
- 2) OAC only (N=1281)
- antiplatelets only (N=1523)
 no antithrombotic (N=1366)

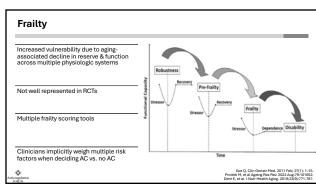


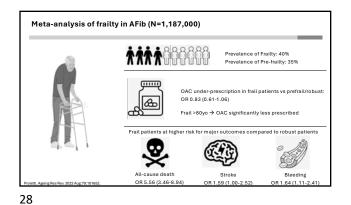


Older patients less likely to be prescribed OAC

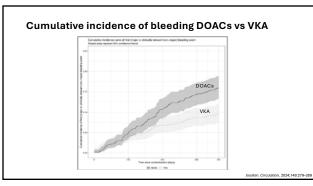
+ Swedish registry (2009-2012) of 12,000 first-time stroke patients with AFib


Age group	Valid Observations	OAC Prescribing Frequency	Proportion (%)
18-69	1789	1098	61.4
70-79	2909	1531	52.6
80-89	5342	1551	29.0
90+	1993	209	10.5

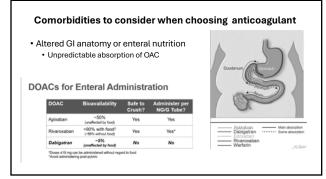


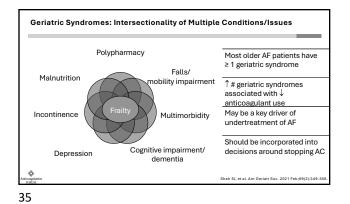


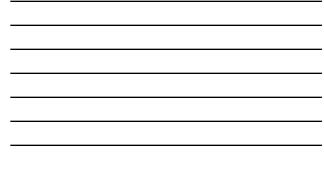
STROKE RISK*		HAZARD RATIO	S (95% CI)
RE-LY (n=7,258)1	Dabigatran 110 mg Twice-daily Dabigatran 150 mg Twice-daily		0.88 (0.66-1.17) 0.67 (0.49-0.90)
ROCKET AF (n=6,229)1	Rivaroxaban 20 mg Once-daily		0.88 (0.75-1.03)
ARISTOTLE (n=5,678)1	Apixaban 5 mg Twice-daily		0.79 (0.65-0.95)
ENGAGE (n=4,986)2	Edoxaban 60 mg Once-daily		0.83 (0.67-1.04)
RISK OF MAJOR B	LEEDING	HAZARD RATIO	S (95% CI)
RE-LY (n=7,258)1	Dabigatran 110 mg Twice-daily Dabigatran 150 mg Twice-daily		- 1.01 (0.83-1.23) 1.18 (0.98-1.42)
ROCKET AF (n=6,229)1	Rivaroxaban 20 mg Once-daily		1.04 (0.90-1.20)
ARISTOTLE (n=5,678)1	Apixaban 5 mg Twice-daily	-	0.69 (0.60-0.80)
ENGAGE (n=4,986)2	Edoxaban 60 mg Once-daily		0.83 (0.70-99)

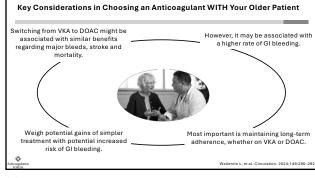


FRAIL-AF: Design • 8 Dutch thrombosis clinics Circulation Nonvalvular AFib patients ≥ 75 yo ()́≡. Jume 149, Issue 4, 23 January 2024; Pages 279-289 on VKA, eGFR <u>></u> 30ml/min Groningen frailty score ≥ 3 ORIGINAL RESEARCH ARTICLE Safety of Switching From a Vitamin K Antagonist to a • Randomized, open label Non-Vitamin K Antagonist Oral Anticoagulant in Frail Older Patients With Atrial Fibrillation: Results of the o Continue VKA (n=661) o Switch to DOAC (n=662) FRAIL-AF Randomized Controlled Trial Superiority trial with planned interim analysis at 160 events ø


	Switch to NOAC			Continue with VKA	
Variable	n (%)	No. of events/100 patient-years (95% CI)	n (%)	No. of events/100 patient-years (95% CI)	Hazard ratio (95% CI)
Primary outcome					
Major or CRNM bleeding	101 (15.3)	17.8 (14.5-21.6)	62 (9.4)	10.5 (8.0-13.4)	1.69 (1.23-2.32
Secondary outcomes					
Bleeding outcomes separately					
Major bleeding	24 (3.6)	3.9 (2.5-5.9)	16 (2.4)	2.6 (1.5-4.2)	1.52 (0.81-2.87
CRNM bleeding	84 (12.7)	14.6 (11.7-18.1)	49 (7.4)	8.2 (6.1-10.9)	1.77 (1.24-2.52
Thromboembolic events	16 (2.4)	2.6 (1.5-4.3)	13 (2.0)	2.1 (1.1-3.6)	1.26 (0.60-2.61
Composite of thromboembolic events plus major or CRNM bleeding	115 (12.4)	20.6 (17.0-24.7)	73 (11.0)	12.4 (9.8-15.6)	1.65 (1.23-2.21
Composite of ischemic and hemonhagic stroke	14 (2.1)	2.3 (1.3-3.8)	11 (1.7)	1.8 (0.9-3.2)	1.30 (0.59-2.87
All-cause mortality	44 (6.7)	7.1 (5.2-9.5)	46 (2.0)	7.4 (5.4-9.8)	0.96 (0.64-1.45


Table 3. First Major or Clinically Relevant Nonmajor Bleeding' Location per Treatment Arm					Stopped early for futility
	Major bleedings	s CRNM bleedings			(underpowered)
Bleeding location	Switch to NOAC	Continue with VKA	Switch to NOAC	Continue with VKA	
Skin, n (%)			23 (3.5)	10 (1.5)	Precludes drawing conclusions or
Oropharyngeal, n (%)		1 (0.2)	19 (2.9)	16 (2.3)	differences between the groups
Gastrointestinal, n (%)	9 (1.4)	1 (0.2)	8 (1.2)	3 (0.5)	
Urogenital, n (%)			20 (3.0)	11 (1.7)	VKA patients already tolerant
Brain,† n (%)	7 (1.1)	6 (0.9)			
Ophthalmic, n (%)		1 (0.2)	3 (0.5)	2 (0.3)	DOAC choice not individualized or
Musculoskeletal, n (%)	1 (0.2)		1 (0.2)	4 (0.6)	randomized (50% rivaroxaban)
Lung, n (%)		1 (0.2)			,
Other, n (%)	2 (0.3)	3 (0.5)	8 (1.2)	3 (0.5)	TTR not reported for VKA arm


32

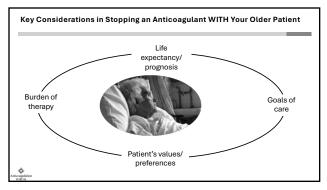

Comorbidities to consider when choosing anticoagulant

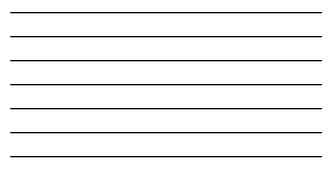
- Renal insufficiency
 ose reductions or avoidance for some DOACs
- dose reductions of avoidance for some DOACS
 Liver disease
 Caution with VKA and DOACs based on Child-Pugh
 Underweight
 Dose reduction with Apixaban/Edoxaban in AFib
- Cancer-associated VTE
 Apixaban/Rivaroxaban/Edoxaban/LMWH > VKA
- Antiphospholipid syndrome
 VKA > DOACs
- Mechanical Heart valves
 VKA>DOACs

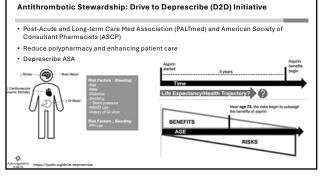
Case 4: Audience Response Question

- 96 yo woman on apixaban for atrial fibrillation
- Brought into ED from long-term care facility after a fall event that she does not remember
- Has advanced Alzheimer's and is fully dependent for ADLs
- Patient intermittently refuses oral medications at long-term facility Head CT is negative for any bleeding and ED resident is asking for recommendations on resuming apixaban

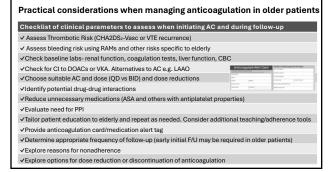
What would you recommend?


- A. Continue twice daily apixaban B. Switch to once-daily rivaroxaban
- C. Switch to VKA
- D. Stop all anticoagulation


37


ŵ

Competing risk of death from nor net clinical benefit (NCB) of antic	n-stroke causes, such as advanced dementia, diminishes the coagulant therapy
After age 87 years and 92 years, M minimal clinically relevant thresh	NCB of warfarin and apixaban, respectively, falls below the nold
Recent data suggests roughly 1/3 remain on anticoagulation in last	8 of nursing home residents with AF and advanced dementia 6 months of life
More high-quality data is needed stewardship initiatives in these p	to inform decision-making and drive antithrombotic atient populations
"Drive to Deprescribe" initiative (https://paltc.org/drive-deprescribe)
	Ouellet GM, et al. JAMA Intern Med. 2021:181(8):1121-
¢-	Shah SJ, et al. Circ Cardiovasc Qual Outcomes. 2019 Nov;12(11):e00 Parks A. et al. JAMA Intern Med. 2021:181(8):


38

41

Acknowledgements

Thanks to the Anticoagulation Forum for slides from a recent webinar on Anticoagulation in Older Patients https://acforum.org/web/education-webinars.php